Simulation Approaches to X-ray C-Arm-based Interventions

0.00

Add to Wishlist
Add to Wishlist

Description

Simulation Approaches to X-ray C-Arm-based Interventions, Is A Well-Researched Topic, It Is To Be Used As A Guide Or Framework For Your Research

Abstract

Mobile C-Arm systems have enabled interventional spine procedures, such as facet joint injections, to be performed minimally-invasively under X-ray or fluoroscopy guidance. The downside to these procedures is the radiation exposure the patient and medical sta are subject
to, which can vary greatly depending on the procedure as well as the skill and experience of the team. Standard training methods for these procedures involve the use of a physical C-Arm with real X-rays training on either cadavers or via an apprenticeship-based program.

Many guidance systems have been proposed in the literature which aim to reduce the amount of radiation exposure intraoperatively by supplementing the X-ray images with digitally reconstructed radiographs (DRRs). These systems have shown promising results in the lab but have proven dicult to integrate into the clinical workflow due to costly equipment, safety protocols, and diculties in maintaining patient registration. Another approach for reducing the amount of radiation exposure is by providing better hands-on training for C-Arm positioning through a pre-operative simulator. Such simulators have been proposed in the literature but still require access to a physical C-Arm or costly tracking equipment.

With the goal of providing hands-on, accessible training for C-Arm positioning tasks, we have developed a miniature 3D-printed C-Arm simulator using accelerometer-based tracking. The system is comprised of a software application to interface with the accelerometers and
provide a real-time DRR display based on the position of the C-Arm source. We conducted a user study, consisting of control and experimental groups, to evaluate the ecacy of thesystem as a training tool. The experimental group achieved significantly lower procedure time and higher positioning accuracy than the control group. The system was evaluated positively for its use in medical education via a 5-pt likert scale questionnaire.

C-Arm positioning tasks are associated with a highly visual learning-based nature due to the spatial mapping required from 2D fluoroscopic image to 3D C-Arm and patient. Due to the limited physical interaction required, this task is well suited for training in Virtual Reality (VR), eliminating the need for a physical C-Arm. To this end, we extended the system presented in chapter 2 to an entirely virtual-based approach. We implemented the system as a 3DSlicer module and conducted a pilot study for preliminary evaluation. The reception was overall positive, with users expressing enthusiasm towards training in VR, but also highlighting
limitations and potential areas of improvement of the system.

Table of Contents

Abstract ii
Lay Summary iii
Acknowledgments iv
List of Figures viii
List of Tables x
List of Appendices xi
List of Abbreviations, Symbols, and Nomenclature xii
1 Introduction 1
1.1 Spinal Anatomy and Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Herniated Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Facet Joint Syndrome . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Diagnosis and Treatment . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Imaging Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 C-Arm Fluoroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Mobile C-Arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 C-Arm Fluoroscopy-Guided Spinal Procedures . . . . . . . . . . . . . . . . . 11
1.4.1 Facet Joint Injections . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Epidural Steroid Injections . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.3 As Low As Reasonably Achievable (ALARA) Principle . . . . . . . . 13
1.4.4 Procedure Diculty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Standard C-Arm Training and Gaps . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.1 Digitally Reconstructed Radiographs . . . . . . . . . . . . . . . . . . . 15
1.6.2 Tracking Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Optical Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
RGBD+Depth Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Mechanical Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Inertial Measurement Units . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.3 Intraoperative C-Arm Augmentation . . . . . . . . . . . . . . . . . . . 22
C-Arm Positioning Using Virtual Fluoroscopy . . . . . . . . . . . . . . 22
Camera Augmented Mobile C-Arm (CAMC) . . . . . . . . . . . . . . 23
Technician-in-the-loop C-Arm Repositioning . . . . . . . . . . . . . . 23
Closing the Calibration Loop . . . . . . . . . . . . . . . . . . . . . . . 24
Accelerometer Based Tracking . . . . . . . . . . . . . . . . . . . . . . 24
1.6.4 Preoperative C-Arm Simulators . . . . . . . . . . . . . . . . . . . . . 24
3D Systems ANGIO Mentor . . . . . . . . . . . . . . . . . . . . . . . 25
SimPORTAL Fluoro-less C-Arm Trainer . . . . . . . . . . . . . . . . . 25
Mixed Reality C-Arm Simulator . . . . . . . . . . . . . . . . . . . . . 26
Artificial X-ray Imaging System (AXIS) . . . . . . . . . . . . . . . . . 26
Image-Guided Surgery Toolkit . . . . . . . . . . . . . . . . . . . . . . 26
VirtX Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.8 Objective 1: Miniature C-Arm Simulator . . . . . . . . . . . . . . . . . . . . . 28
1.9 Objective 2: Virtual Reality C-Arm Simulator . . . . . . . . . . . . . . . . . . 28
2 Miniature C-Arm Simulator Using Wireless Accelerometer Based Tracking 30
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 C-Arm Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 C-Arm Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Digitally Reconstructed Radiographs . . . . . . . . . . . . . . . . . . . 34
2.2.5 Software Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.6 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 DRR Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Open Source Virtual Reality C-Arm Simulator 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 VR Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 System Requirements and Hardware . . . . . . . . . . . . . . . . . . . 46
3.2.3 Virtual C-Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.4 Modelling C-Arm kinematics . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.5 DRR Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.6 Slicer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.7 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.8 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.9 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Discussion and Conclusions 57
4.1 Miniature C-Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 VR C-Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A Copyright Transfers and Reprint Permissions 64
Bibliography 65

Brand

YourPastQuestions Brand

Additional information

Author

Daniel R. Allen

No of Chapters

4

No of Pages

85

Reference

YES

Format

PDF

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.