Evaluation and bias correction of remotely sensed precipitation products across Canada

0

Add to Wishlist
Add to Wishlist

Description

Evaluation and bias correction of remotely sensed precipitation
products across Canada, Is A Well-Researched Topic, It Is To Be Used As A Guide Or Framework For Your Research.

Abstract

Reliable estimation of precipitation, as the most important variable in hydrological modelling, is crucial for water resources management. Rain gauges that provide precipitation measurements at point scale have inherent limitations and difficulties in remote regions and complex terrains due to accessibility, gauge undercatch, among others. Alternatively, satellite and radar precipitation data can estimate precipitation at high spatial and temporal resolution by utilizing several types of space and ground-borne sensors. However, due to the indirect estimates of precipitation by remotely sensed products, their measurements are subject to systematic biases and are required to be evaluated and bias-adjusted before using at a specific area.

This study investigates the performance of multiple high-resolution remotely sensed precipitation estimates at hourly and daily time scales over Canada for 2014-2018. Four products of the recently released Integrated Multi-satEllite Retrievals for Global precipitation measurement (IMERG-V06) and the Multi-Radar Multi-Sensor (MRMS) Precipitation Rate data for different seasons are analyzed. Evaluations are based on a suite of metrics to assess different characteristics of precipitation estimates using quality-controlled hourly gauge data considered as the truth. The results suggest that Calibrated precipitation (PrCal) outperforms the other IMERG products and estimates the amount of precipitation relatively well particularly over the Prairies and during fall and summer. Over the western and eastern coastal regions, IMERG tends to overestimate precipitation intensities by around 25%. The discrepancy between satellite and ground-based data is higher for more intense precipitation events. Further analyses indicate that while MRMS tends to overestimate the amount of precipitation, it outperforms the IMERG products based on several metrics, especially in detecting the occurrence of precipitation over the eastern coastal regions. Overall, the study of IMERG V06 and MRMS precipitation estimates at a relatively high temporal resolution indicates that both products have the potential to complement ground-based observations over Canada.

Further, a regression quantile mapping method is developed to adjust the systematic spatial and temporal biases of IMERG PrCal across Canada. For this purpose, several climatic and topographic explanatory variables are resampled and applied in the regression-based model to extend satellite bias correction over the ungauged pixels. The proposed method shows promising results by reducing RBias (by ~32%) and increasing correlation values (by ~ 0.31). The bias-corrected precipitation product (for 2014-2018) can be applied by researchers and various stakeholders, across Canada, for the analysis of extreme precipitation events, water resources management, design of infrastructure, among others.

Finally, the application of daily IMERG data in streamflow simulation is demonstrated by using the original data to drive the calibrated Raven rainfall-runoff model over the Bathewana watershed in southern Ontario for 2001-2015. By comparing with the observed flow, the obtained results indicate that IMERG tends to underestimate the streamflow, however, it is able to preserve its temporal variation reasonably well. Overall, results suggest that further improvements of IMERG data should be considered by its algorithm developers to enhance the quality of this product in cold weather conditions.

Table of Contents

Abstract ………………………….. ………………………….. ………………………….. ………………………….. …… ii
Lay Summary ………………………….. ………………………….. ………………………….. ………………………. iv
Acknowledgments………………………….. ………………………….. ………………………….. …………………. v
Table of Contents ………………………….. ………………………….. ………………………….. …………………. vi
List of Tables ………………………….. ………………………….. ………………………….. ………………………. ix
List of Figures ………………………….. ………………………….. ………………………….. ………………………. x
Chapter 1 ………………………….. ………………………….. ………………………….. ………………………….. …. 1
1.Thesis Overview ………………………….. ………………………….. ………………………….. ………………… 1
1.1. Background ………………………….. ………………………….. ………………………….. ………………… 1
1.2. Research Objectives ………………………….. ………………………….. ………………………….. …….. 2
1.3. Research Questions ………………………….. ………………………….. ………………………….. ……… 2
1.4. Summary of Chapters ………………………….. ………………………….. ………………………….. …… 3
1.5. References ………………………….. ………………………….. ………………………….. ………………….. 4
Chapter 2 ………………………….. ………………………….. ………………………….. ………………………….. …. 6
2. Background Literature ………………………….. ………………………….. ………………………….. ……….. 6
2.1. Satellite Precipitation Products ………………………….. ………………………….. ………………….. 6
2.2. Radar Precipitation Data ………………………….. ………………………….. …………………………. 11
2.3. Statistical Evaluation of QPEs ………………………….. ………………………….. …………………. 12
2.4. Bias Correction of Satellite Precipitation Products ………………………….. ………………….. 14
2.5. Hydrological Evaluation of QPEs ………………………….. ………………………….. …………….. 15
2.5. References ………………………….. ………………………….. ………………………….. ………………… 17
Chapter 3 ………………………….. ………………………….. ………………………….. ………………………….. .. 21
3. Evaluation of remotely sensed precipitation products across Canada ………………………….. . 21
3.1. Introduction ………………………….. ………………………….. ………………………….. ………………. 21
3.2. Study Area ………………………….. ………………………….. ………………………….. ………………… 22
3.3. Data ………………………….. ………………………….. ………………………….. …………………………. 23
3.3.1. Ground-Based Observations ………………………….. ………………………….. ………………. 23
3.3.2. IMERG Satellite Data ………………………….. ………………………….. ……………………….. 25
3.3.4. MRMS Product ………………………….. ………………………….. ………………………….. ……. 26
3.4. Methodology ………………………….. ………………………….. ………………………….. …………….. 27
3.4.1. Continuous Verification Metrics ………………………….. ………………………….. ………… 28
3.4.2. Categorical Verification Metrics ………………………….. ………………………….. ………… 31

3.5. Results ………………………….. ………………………….. ………………………….. ……………………… 32
3.5.1. Evaluation of GPM-IMERG V06 at Daily Timescale ………………………….. ………… 32
3.5.2. Evaluation of IMERG V06 and MRMS at Hourly Timescale …………………………. 37
3.6. Discussion ………………………….. ………………………….. ………………………….. ………………… 56
3.7. Summary and Conclusion ………………………….. ………………………….. ……………………….. 58
3.8. References ………………………….. ………………………….. ………………………….. ………………… 59
Chapter 4 ………………………….. ………………………….. ………………………….. ………………………….. .. 64
4. Bias correction of satellite IMERG data ………………………….. ………………………….. ………….. 64
4.1. Introduction ………………………….. ………………………….. ………………………….. ………………. 64
4.2. Data ………………………….. ………………………….. ………………………….. ………………………. 71
4.2.1. NCEP North American Regional Reanalysis: NARR ………………………….. ………… 71
4.3. Methodology ………………………….. ………………………….. ………………………….. …………….. 74
4.3.1. Regression Quantile Mapping ………………………….. ………………………….. ……………. 74
4.3.2. Smoothing Spline ………………………….. ………………………….. ………………………….. … 77
4.3.3. Clustering………………………….. ………………………….. ………………………….. ……………. 79
4.3.4. CDF Segmentation ………………………….. ………………………….. ………………………….. . 82
4.3.5. Interpolating/Extrapolating by IDW ………………………….. ………………………….. ……. 83
4.3.6. Validation using Bootstrap Technique ………………………….. ………………………….. … 83
4.3.7. Methodology Overview ………………………….. ………………………….. …………………….. 84
4.4. Results and Discussion ………………………….. ………………………….. ………………………….. .. 85
4.4.1. Results of Bias Correction at Gauged Pixels ………………………….. …………………….. 91
4.4.1.1. Time Series Evaluation ………………………….. ………………………….. ……………….. 91
4.4.2. Results of Bias Correction at Ungauged Pixels ………………………….. ……………….. 110
4.5. Summary and Conclusion ………………………….. ………………………….. ……………………… 123
4.6. References ………………………….. ………………………….. ………………………….. ………………. 125
Chapter 5 ………………………….. ………………………….. ………………………….. ………………………….. 127
5. Hydrological Evaluation of Daily IMERG Data ………………………….. …………………………. 127
5.1. Introduction ………………………….. ………………………….. ………………………….. …………….. 127
5.2. Study Area ………………………….. ………………………….. ………………………….. ………………. 129
5.3. Data ………………………….. ………………………….. ………………………….. ……………………….. 129
5.3.1. Precipitation Data ………………………….. ………………………….. ………………………….. . 129
5.3.2. Streamflow Data ………………………….. ………………………….. ………………………….. … 129
5.4. Methodology ………………………….. ………………………….. ………………………….. …………… 130 5.4.1. Raven Hydrological Model ………………………….. ………………………….. ……………… 131
5.4.2. Evaluation Metrics ………………………….. ………………………….. ………………………….. 132

5.5. Results and Discussions ………………………….. ………………………….. ………………………… 133
5.6. Conclusions ………………………….. ………………………….. ………………………….. …………….. 140
5.7. References ………………………….. ………………………….. ………………………….. ………………. 141
Chapter 6 ………………………….. ………………………….. ………………………….. ………………………….. 144
6. Concluding Remarks and Future Work ………………………….. ………………………….. …………. 144
References ………………………….. ………………………….. ………………………….. …………………….. 148
Appendix: List of Acronyms ………………………….. ………………………….. ………………………….. . 149
Curriculum Vitae ………………………….. ………………………….. ………………………….. ………………. 151

Additional information

Author

Saber Moazamigoodarzi

No of Chapters

6

No of Pages

164

Reference

YES

Format

PDF

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.